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Abstract. The analysis of complex networks has revealed patterns of organization in a variety of natural
and artificial systems, including neuronal networks of the brain at multiple scales. In this paper, we describe
a novel analysis of the large-scale connectivity between regions of the mammalian cerebral cortex, utilizing a
set of hierarchical measurements proposed recently. We examine previously identified functional clusters of
brain regions in macaque visual cortex and cat cortex and find significant differences between such clusters
in terms of several hierarchical measures, revealing differences in how these clusters are embedded in the
overall cortical architecture. For example, the ventral cluster of visual cortex maintains structurally more
segregated, less divergent connections than the dorsal cluster, which may point to functionally different
roles of their constituent brain regions.

PACS. 89.75.Fb Structures and organization in complex systems – 87.19.La Neuroscience –
89.75.Hc Networks and genealogical trees

1 Introduction

The mammalian cerebral cortex is possibly one of the most
complex systems found in nature, forming an intricate
pattern of connections between individual neurons, spe-
cialized neuronal populations and cortical regions. Large-
scale patterns of interregional corticocortical connections
exhibit distinct patterns, characterized by clustering of
functionally related brain regions, combined with short
paths and wiring lengths. The resulting functional du-
ality between localization/modularization and distribu-
tion/integration [1,2] creates dynamical states that un-
derlie perception and cognition and can be accessed
using modern invasive (neurophysiology) and noninva-
sive (EEG, fMRI) neuroscience methods. As an increas-
ing amount of experimental data becomes available, it has
become particularly interesting to represent, analyze and
model such data in order to emphasize important organi-
zational and functional properties of the mammalian cor-
tical structure.

The analysis of complex networks (e.g. [3–6]) has re-
cently been recognized as a powerful and flexible approach
for representing, analyzing and modeling a broad range of
natural and artificial systems. Indeed, complex networks
can be thought of as an intersection between graph the-
ory and statistical physics, thus incorporating and inte-
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grating several powerful and general concepts and meth-
ods from these two well-established areas. In neuroscience,
complex networks have been proposed as models of mi-
croscopic and mesoscopic neuronal connectivity. Wiring
morphology has been related to functional circuit prop-
erties such as synchronization [7] and morphologically re-
alistic neuronal complex networks have been used in or-
der to investigate the relationship between neuronal shape
and connectivity (e.g. [8]), and to devise statistical mod-
els of neuron-to-neuron connectivity [9–11]. At the macro-
scopic or large scale, complex network tools have revealed
clusters of functionally related areas [12], the presence of
small-world attributes [12–14], high proportions of cycles
and specific network motifs [15].

The connectivity of a complex network can be char-
acterized in terms of several topological measurements.
While many studies have considered node degree, clus-
tering coefficient, and shortest paths between two nodes,
such measurements provide rather limited, though impor-
tant, information about network structure. For instance,
there is an infinite number of networks which lead to iden-
tical mean values for these three measurements (see, for
instance, [6]). More importantly, given a network there
will typically exist several nodes sharing the same node
degree and clustering coefficient, which means that such
measurements are not enough to characterize local con-
nectivity in a discriminative way. Several measurements
have been suggested in order to provide additional and
richer characterization of the connectivity of complex
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networks [6]. Recently, a set of hierarchical measures was
proposed [16–18] which explicitly take into account the hi-
erarchical organization established around each node. For
instance, the traditional node degree and clustering coeffi-
cient can naturally be extended as hierarchical signatures
in terms of the hierarchical levels. More specifically, given
one of the network nodes, it is possible to identify a net-
work neighborhood based on the distance from that node
to all other nodes in the network. The nodes which are
accessible through a single link from the reference node
will constitute the first hierarchical level; the nodes reach-
able by a minimum path of two edges from the reference
node will define the second hierarchical level; and so on.
Interestingly, such a distance-based approach establishes
a one-dimensional system of coordinates which allow the
organization of the network nodes with respect to their
distance to the reference node. While the traditional node
degree corresponds to the number of connections between
the reference node and those nodes at the first hierarchi-
cal level, the hierarchical approach allows the extension of
such a useful measurement to all hierarchical levels defined
by each network node. For instance, the node degree at the
second hierarchical level will correspond to the number of
links between the nodes at the first and second hierarchi-
cal levels. A similar extension can be defined for the clus-
tering coefficient. In addition to these two measurements,
we also consider the divergence ratio, which expresses how
much the links between two subsequent hierarchical stages
map into different nodes (bijectivity). Because such mea-
sures capture a much broader context around each node,
they have potential for richer characterization of the lo-
cal and global network connectivity. Preliminary appli-
cations of these hierarchical measures to Sznajd complex
networks [19] as well as real data related to word associa-
tions and amino acids [16] have substantiated their strong
discriminative power.

The existence of distinct clusters of areas in all large-
scale cortical connectivity matrices examined so far [12]
raises the question of whether these clusters differ in terms
of their local and global connectivity, as well as in terms
of hierarchical measures that evaluate their embedding in
the overall architecture. In this paper we utilize an ar-
ray of hierarchical measures to identify potential differ-
ences in previously reported clusters of cortical regions.
Our set of hierarchical measures reveals differences in the
way that individual brain regions access and interact with
the remainder of the network. We find that, by providing
richer information about the connectivity context around
each region, the adopted hierarchical measurements can
reveal relevant structural properties for distinct clusters
of regions. Consistent with previous studies showing dif-
ferences between the organization of the dorsal and ventral
macaque visual regions, our analyses revealed that areas
of the ventral system tend to be more strongly connected
at hierarchical levels higher than 1, while exhibiting less
divergence than the dorsal system. When applied to cat
cortical regions, our hierarchical measures revealed that
sensory areas are functionally more segregated than those
of the frontolimbic complex. Overall, our results allowed

 

Fig. 1. A simple directed network containing N = 10 nodes
and K = 14 edges. The rings of radiuses 1 and 2 centered at
i = 5, i.e. R1 (5) and R2 (5), are identified by the two dashed
circles.

the identification of new principles of cortical organization
in different systems and species.

We begin by presenting and illustrating each of the
four adopted hierarchical measurements and we then de-
scribe our experimental data sets. The results for macaque
visual cortical areas and cat cortical areas are then pre-
sented and discussed, and we conclude with a discus-
sion of the main findings and perspectives for further
developments.

2 Hierarchical measurements

A complex network G is composed of a set of N nodes
and a set of K edges between such nodes. If i and j are
generic nodes of G; a directed edge extending from i to j
is henceforth represented by the ordered pair (i, j). There-
fore, the maximum number of directed edges which can be
established amongst N nodes, excluding self-connections,
is T = N(N − 1). The shortest path from a node i to an-
other node j corresponds to the sequence of edges start-
ing at i and extending up to j which involves the smallest
number of edges, defining its length.

Given a specific node i, the set of nodes which are
exactly at shortest distance d from i is henceforth called
the ring of radius (or distance) d centered at i, expressed
as Rd (i). Figure 1 illustrates a simple network with N =
10 nodes and K = 15 edges and the rings of radius d = 1
and 2 centered at node i = 5. Each value of d therefore
establishes a respective hierarchical level with respect to
the reference node i. Note that different rings at the same
reference radius d are usually obtained for distinct refer-
ence nodes. Indeed, rings at successive distances around
a reference node i provide a hierarchical representation of
the whole network with respect to i.

The number of hierarchical neighbors at distance d
from a node i, hence represented as nd (i), is hence-
forth understood as the number of nodes contained in
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the ring Rd (i). For example, in Figure 1, n1 (5) = 5 and
n2 (5) = 4. Note that nd (i) goes to zero as the border of
the network (i.e. the set of nodes with null outdegree) is
reached. Note also that the sum of all hierarchical neigh-
bors over all hierarchical depths must be equal to N − 1.
The number of hierarchical neighbors has been considered
previously in [20,21], while [22] also considered the degree
of such neighbors.

The outdegree of a node i is defined as the number of
edges emanating from i. Similarly, the indegree of node i
corresponds to the number of edges pointing towards that
node. Nodes with particularly high degree values are called
hubs. The concept of node degree can be generalized hier-
archically [16–18]. The hierarchical outdegree of a node i is
henceforth understood as the number of edges extending
from the ring of radius d centered at i to the nodes belong-
ing to the ring of radius d+1 centered at that same node,
i.e. Rd (i). For example, the hierarchical degrees of node 5
in Figure 1 are h0 (5) = 5, h1 (5) = 6 and h2 (5) = 0. It is
also possible to define the hierarchical indegree, but this
measurement will not be considered in the present work.

Although the number of hierarchical neighbors and the
hierarchical degree are often correlated, they are usually
not identical. For instance, there are 4 nodes in R2 (5),
but 6 edges extend from R1 (5) to R2 (5), indicating that
some nodes in R1 (5) connect to more than one node
in R2 (5). As the relative behavior of the number of hi-
erarchical neighbors and hierarchical degree may provide
insights about the connectivity of the analyzed network, it
is interesting to consider the divergence measurement [18]
defined as:

Dd (i) =
nd+1 (i)
hd (i)

.

For example, we have in Figure 1 that D1 (5) =
n2 (5) /h1 (5) = 4/6 = 2/3, indicating that there are more
edges converging than diverging from ring 1 to ring 2. Be-
cause the number of hierarchical neighbors of a generic
node i at distance d = 1 is always equal to the outdegree
of that node, we necessarily have maximum divergence
characterized by D1 (i) = 1. Note that 0 ≤ Dd (i) ≤ 1,
with lower values of Dd (i) indicating greater convergence
(less divergence).

The hierarchical clustering coefficient [17,18] is an-
other measurement which has been found to be valuable
for the characterization of complex networks (e.g. [18,19]).
Given a node i, its hierarchical clustering coefficient at
distance d is defined as the ratio between the number of
existing edges in Rd (i) and the maximum possible number
of edges between the nodes in that ring, i.e.

CCd (i) =
ed (i)

nd (i) (nd (i) − 1)

where ed (i) stands for the number of edges inside the
ring Rd (i). The hierarchical clustering coefficient there-
fore provides an interesting means for quantifying the con-
nectivity between nodes at successive distances from the
reference node, providing a natural and intuitive extension
of the traditional clustering coefficient (e.g. [3–5]). Note

that this definition of clustering coefficient takes into ac-
count only the outgoing edges of each node. Although an
analogue measurement could be defined for the incoming
edges, this is not considered in the present paper. The ver-
ification of trends (e.g. constant value, monotonic increase
or decrease) of CCd (i) as d increases may indicate that at
least a portion of the network connections are organized
with respect to the reference node i.

The four hierarchical measurements considered in this
paper (i.e. hierarchical number of neighbors, hierarchical
degree, divergence ratio and hierarchical clustering coeffi-
cient) have been derived from these matrices by using an
algorithm, written in SCILAB (www.scilab.org), which
first identifies the distances from each reference node to
all other nodes and then uses this information in order to
calculate the hierarchical degree, divergence ratio and hi-
erarchical clustering coefficient. The identification of the
nodes at successive distances from the reference node is
performed by using two lists, L1 and L2, the former con-
taining the nodes at the current distance and the latter
storing the nodes which can be reached, through a single
edge, from the nodes in L1. The content of these lists is
swapped at each step, until no nodes remain in L2. In
order to avoid revisiting nodes, the nodes in list L1 are
marked by a flag in the graph so they are not considered
in the further steps.

All statistical comparisons in this paper refer to stan-
dard independent-measures t-tests.

3 Connectivity data sets

Data sets used in this study were identical to those
used in [14] and [15]. The reader should consult these
or other primary publications for anatomical abbrevi-
ations and functional descriptions of specific brain ar-
eas - connection matrices are available for download at
www.indiana.edu/∼cortex. All data sets describe net-
works of entire brain regions and their interregional path-
ways and thus represent “large-scale” connection patterns
summarized in an adjacency or connection matrix. We ex-
amined two large-scale cortical connection matrices, for
macaque visual cortex (N = 30, K = 311; [23]) and
cat cortex (N = 52, K = 820; [24]). The matrix of
macaque visual cortex was modified by eliminating ar-
eas PIT, CIT and STP and assigning their connections
to {PITd, PITv}, {CITd, CITv} and {STPp, STPa}, re-
spectively, as well as excluding areas MIP and MDP which
lacked sufficient connectional information. Following the
discussion in [12], the remaining 30 areas can be divided
into two functionally distinct clusters, defined by similari-
ties and dissimilarities in their interconnectivity: a parietal
and occipito-parietal cluster (V1, V2, P, V3A, MT, V4t,
V4, PIP, LIP, VIP, DP, PO, MSTi, MSTd, FST, FEF) and
an inferior-temporal and prefrontal cluster (PITv, PITd,
CITv, CITd, AITv, AITd, STPa, 7a, TF, TH, VOT, 46.
We refer to these two clusters as “dorsal” and “ventral”,
respectively. Note that following reference [12] the first
cluster, despite its designation as occipito-parietal, con-
tains one area (FEF) located in frontal cortex.
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The connection matrix of cat cortex was binarized,
and area Hipp (hippocampus) and all thalamo-cortical
pathways were excluded. Following [12,25] the remaining
52 cortical areas can be divided into four functionally dis-
tinct clusters: visual (17, 18, 19, PLLS, PMLS, ALLS,
AMLS, VLS, DLS, 21a, 21b, 20a, 20b, 7, AES, PS), au-
ditory (AI, AII, AAF, P, VPc, EPp, Tem), somatomotor
(31, 3b, 1, 2, SII, SIV, 4g, 4, 6l, 6m, 5Am, 5Al, 5Bm, 5Bl,
SSAi, SSAo), and frontolimbic (PFCMil, PFCMd, PFCL,
Ia, Ig, CGa, CGp, RS, 35, 36, pSb, Sb, Enr). For statisti-
cal comparison, visual and auditory clusters are combined
into a “posterior” cluster, while somatomotor and fron-
tolimbic clusters are combined into an “anterior” cluster.
Additional comparisons are carried out between frontolim-
bic areas and a set of lower visual and auditory areas (se-
lected based on the ordering reported in [26]) consisting
of areas 17, 18, VLS, PS, 19, PMLS, PLLS, AI, AII, AAF,
and P, referred to as “sensory”.

4 Results and discussion

4.1 Macaque visual cortex

The polar diagrams in Figure 2 represent a summary
(or fingerprint [27]) of hierarchical measures applied to
each of the individual areas of macaque visual cortex, in-
cluding the number of hierarchical neighbors, hierarchical
degrees, divergence coefficients and hierarchical clustering
coefficients of each considered cortical region as a function
of the hierarchical distance d. Since the diameter of the
network is 3, no region exhibits hierarchical depth higher
than 3.

Closer analysis of the hierarchical fingerprint data re-
veals that individual brain regions show marked differ-
ences. For example, an examination of the hierarchical
number of nodes allows one to see how much of the net-
work can be accessed from a given reference node at each
level of hierarchical depth. Only 6 areas (V2, V4, MT,
FST, MSTd, LIP) connect to more than half of the re-
maining N – 1 nodes at hierarchical depth 1. All of these
areas belong to the dorsal cluster. Only 8 areas connect to
less than 90% of the macaque visual cortex up to hierar-
chical depth 2, and these areas (VOT, CITd, CITv, AITd,
AITv, STPp, STPa, 46) all belong to the ventral cluster.
Only 8 areas connect to the entire network at hierarchical
depth 2, and these areas (V3, VP, V4, MT, TF, MSTd,
PIP, LIP) all belong to the dorsal cluster. On average,
members of the ventral cluster connect to 7.69 ± 3.17 ar-
eas at hierarchical depth 1, while members of the dorsal
cluster connect to 12.41 ± 3.73 areas (p < 0.01)

The hierarchical degree distributions show significant
(p < 0.001) differences for hierarchical depths 1 and 2 (all
hierarchical degrees are zero for greater depths). Mean
hierarchical degrees for dorsal areas are 59.29 ± 7.63 and
3.59 ± 4.12, versus 43.54 ± 13.49 and 21.46 ± 17.41, for
depths 1 and 2 respectively. Only four areas exhibit peaks
in their hierarchical degree at depth 2 (CITd, CITv, AITd,
STPa), all of which are members of the ventral cluster.

Fig. 2. Polar diagrams showing the number of hierarchical
neighbors, hierarchical degrees, divergence ratios and hierar-
chical clustering coefficients of the considered macaque visual
cortical areas, as indicated in the legend (a). The hierarchical
depth of all regions is limited to 3, represented by the successive
rings, and the gray-level scales are normalized between black
(minimum value) and white (maximum value) for each type
of hierarchical measure, respectively. The two main clusters
correspond to the occipito-parietal or dorsal (b) and inferior-
temporal and prefrontal or ventral areas (c).

The distributions of hierarchical clustering coefficients
at depths 2 and 3 show significant (p < 0.001 and p < 0.01,
respectively) differences between dorsal and ventral ar-
eas. Ventral areas are more clustered than dorsal areas
(depth 2: 0.42±0.07 versus 0.33±0.05; depth 3: 0.30±0.31
versus 0.03 ± 0.12). Notably, no such difference exists
at depth 1 (0.54 ± 0.11 versus 0.58 ± 0.11). The differ-
ence in hierarchical clustering coefficients found in ventral



L. da F. Costa and O. Sporns: Hierarchical features of large-scale cortical connectivity 571

Fig. 3. Scatterplot obtained by considering the hierarchical
clustering coefficient for d = 2 and the divergence ratio for
d = 1. Dorsal areas are denoted by ‘×’, while ventral areas are
denoted by ‘o’. Fat symbols and errorbars indicate means and
standard deviations for dorsal (‘×’) and ventral (‘o’) clusters.

versus dorsal areas cannot be explained by differences in
connection densities. On average, ventral areas maintain
fewer connections per area than dorsal areas. Thus, dorsal
areas are less clustered than ventral areas, despite hav-
ing higher connection density. Three areas exhibit greater
clustering coefficients at depth 2 than 1, including one
dorsal area (V4) and two ventral areas (TH, 46). Two ar-
eas have higher clustering coefficients for depth 3 than
depth 1, both (VOT, AITd) members of the ventral clus-
ter. Because the hierarchical clustering coefficient is rela-
tive to the number of nodes at each depth, this informa-
tion should be taken into account when interpreting the
clustering coefficients. For instance, values of this mea-
surement close to unity that involve only a few nodes
are not particularly meaningful. The divergence ratio at
depth 1 differs significantly (p < 0.001) between dorsal
(0.27 ± 0.06) and ventral (0.44 ± 0.15) clusters. No such
difference was found at depth 2.

Figure 3 shows a scatterplot obtained by considering
the hierarchical clustering coefficient for d = 2 and the
divergence ratio for d = 1, displaying differences between
the dorsal and ventral clusters of macaque visual cortex.

To further elucidate the relationships between
macaque visual cortical areas in terms of hierarchical con-
nectivity measures, we performed principal components
analysis (e.g. [28]) as well as k-means clustering on the
data. PCA involves the calculation of the covariance ma-
trix for a set of considered measurements and the pro-
jection of those measurements over a subset of eigenvec-
tors of the covariance matrix which are associated with
the two largest eigenvalues, resulting in a projection onto
those hyperplanes that capture maximal variance. Fig-
ure 4 shows the results of PCA applied to hierarchical
degree data. Areas belonging to the dorsal and ventral

Fig. 4. The projection, through principal component analysis,
of the hierarchical degree onto the respective plane of maxi-
mum dispersion.

clusters are partially segregated, with areas TH, 46, VOT,
AITd, AITv, CITv, CITd, and STPa (all ventral) appear-
ing clearly separated from the remainder of the network.
Similar distributions result from PCA on data on hierar-
chical clustering coefficient and divergence ratio. K-means
clustering identifies these same areas for all three hierar-
chical measures.

To determine the extent to which the structure re-
vealed by hierarchical measures depends on local connec-
tion properties (such as the indegree and outdegree of each
node) versus more global patterns, we performed a com-
parative PCA analysis on hierarchical measures of net-
works that were randomly rewired (with N = 30, and
K = 311) in such a way as to preserve the degree se-
quences of individual nodes [29,30]. We obtained 100 ran-
domized networks which were compared to the real data
by considering their principal component projections. Fig-
ure 5 illustrates the approach. Most significant differences
between macaque brain areas and their randomized coun-
terparts were found for areas TH, 46, AITd, AITv, CITv,
and STPa (all ventral).

4.2 Cat cortex

We performed hierarchical measures analyses on the con-
nectivity matrix of cat cortical regions, by statistically
comparing areas in anterior and posterior clusters (see po-
lar plots in Fig. 6), as well as in frontolimbic and sensory
clusters (see Sect. 3 for area memberships). Both compar-
isons yielded similar results for all four hierarchical mea-
sures investigated in this study, and we focus on the com-
parison between frontolimbic (a subset of anterior) and
sensory (a subset of posterior) brain regions.

At depth 1, sensory regions contacted significantly
(p < 0.01) fewer regions than frontolimbic regions
(10.09± 3.42 versus 18.84± 9.41, respectively), while this
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Fig. 5. The hierarchical degree of the macaque visual areas
(identified by the letters) and 100 random counterparts pro-
jected into the plan of maximum dispersion considering only
areas TH, 46, AITd, AITv, CITv, and STPa (all ventral) which
showed marked differences between the real and randomized
data. The random graphs were obtained so as to preserve the
indegrees and outdegrees of each respective area.

relationship is reversed for depth 3 (10.91 ± 10.26 versus
3.31 ± 5.72, p < 0.05). This pattern suggests that fron-
tolimbic regions maintain more widespread connections
and access the complete network in fewer steps. Data for
hierarchical degree provides further support for this hy-
pothesis, with significantly higher degree values for fron-
tolimbic versus sensory regions at depth 1 (149.00± 44.81
versus 87.82 ± 37.54, p < 0.01) and a reversal at depth 2
(26.92 ± 42.59 versus 74.82± 46.48, p < 0.05).

While the hierarchical clustering coefficient did not ex-
hibit significant differences at depth 1, frontolimbic areas
showed a lower clustering coefficient at depth 2 compared
to sensory areas (0.29± 0.05 versus 0.41± 0.13, p < 0.01).
The divergence ratios for depths 1 and 2 were significantly
lower for frontolimbic areas versus sensory areas (depth 1:
0.24±0.16 versus 0.36±0.08, p < 0.05; depth 2: 0.05±0.06
versus 0.13±0.06, p < 0.01). These two measures indicate
that frontolimbic areas are less segregated and more di-
vergent in terms of their connection structure, compared
to sensory areas.

5 Concluding remarks

Our study shows that the use of hierarchical measures of
connectivity can reveal significant differences in the way a
given reference node accesses and interacts with the rest
of the surrounding network. Note that our goal was not
to identify unique hierarchical arrangements of brain re-
gions, in terms of processing stages of streams, an ap-
proach taken in earlier work [23,26,31]. Instead we apply
hierarchical measures to each brain region, thus placing it
as a reference node at the center of the network, and we

Fig. 6. Polar diagrams (legend as in Fig. 2) expressing the
four hierarchical measures obtained for the cat data. The re-
gions are organized into two main groups, corresponding to the
posterior (a) and anterior (b) clusters.

examine how the efferent connections of this node extend
to successive levels of the surrounding network.

In generating hierarchical network measures for each
brain region we extend the concept of “connectivity fin-
gerprints” [31], “network participation indices” [27], and
“motif fingerprints” [15], which attempt to assess regional
contributions to global network architecture. Our analy-
sis is consistent with earlier studies that had attributed
differences in terms of such contributions between dorsal
and ventral processing streams in macaque visual cortex.
We reveal that the ventral stream consists of areas that
are more tightly clustered at hierarchical depths greater
than 1 and exhibit less divergence, when compared to ar-
eas of the dorsal stream. This may point to important
functional differences between these two visual cortical
subdivisions. Our findings are consistent with earlier phys-
iological observations indicating that response and pro-
cessing latencies of areas in the dorsal stream are shorter
than those of the ventral stream [33,34]. Extending our
analysis to cat cortex we find that clusters of sensory areas
are less divergent (i.e. functionally more segregated) while
regions of the frontolimbic complex, containing many
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polysensory and multimodal neurons, are more divergent
and less highly clustered at depths greater than 1. This
provides objective, connectivity-based evidence for their
diverse effects on broad regions of cortex, subserving their
functional integration.

One major application of hierarchical measures, high-
lighted in this paper, is in identifying principles of struc-
tural network organization. In addition, we point to sev-
eral important functional or dynamic connotations of the
present analysis. Since hierarchical measures are com-
puted based on the efferent connectivity of a reference
node, they essentially capture the spatio-temporal spread
of information away from that node as it becomes acti-
vated. Such activity propagation can be experimentally
assessed [35] and may be a major ingredient in the spread-
ing of epileptic seizures originating in a cortical locale. Dif-
ferences in the ability of individual nodes to access the re-
mainder of the cortical network may also provide insights
into their individual functional contributions, as well as
the functional impact of lesioning the node. We note that
hierarchical measures can also be calculated on the basis
of afferent connections terminating on a reference node,
in which case functional impact of the network onto the
node can be assessed.

There are many future applications of hierarchical
measures, including the study of additional large-scale
connection matrices such as the one of whole macaque
cortex [36], of cat cortex including cortico-thalamic path-
ways [24], or of the human cortex, should such data be-
come available in the future [37]. Analyses carried out in
other mammalian species may provide important informa-
tion on the evolutionary progression of brain connectivity.
Finally, additional hierarchical measures may be devised
that allow further insights into the organization of com-
plex networks.
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